


D-乳酸 (D-LA) 含量检测试剂盒 (WST-1 法) D-Lactic Acid (D-LA) Content Assay Kit (WST-1 Method)

Catalog Number **AKAC014C-50S**Storage Temperature **-20°C**Size **120T/50S**

Visible Spectrophotometry

D-乳酸(D-LA)含量检测试剂盒(WST-1法)

D-Lactic Acid (D-LA) Content Assay Kit (WST-1 Method)

一、产品描述

乳酸是生物体代谢过程中重要的中间产物,在生理和生物学方面具有多种功能,既是糖酵解供能系统的终产物,又是有氧代谢供能系统的氧化基质,在机体能量代谢、氧化还原信号传导和脂质代谢等过程中具有重要作用,乳酸含量可作为评估有氧代谢和糖原代谢的重要指标,并且在医药、农业、工业和食品科学等领域具有广泛应用和研究价值。

D-乳酸脱氢酶 (D-LDH) 能够催化 D-乳酸生成丙酮酸,同时使 NAD+还原生成 NADH 和 H+,进一步通过 1-mPMS 的递氢作用,还原 WST-1 生成水溶性甲臜,产物在 450 nm 处具有特征吸收峰,通过吸光值变化即可定量检测 D-乳酸的含量。

二、产品内容

名称	试剂规格	储存条件	使用方法及注意事项
提取液 A	液体 60 mL×1 瓶	4℃保存	-
提取液 B	液体 10 mL×1 瓶	4℃保存	-
试剂一	液体 60 mL×1 瓶	4℃保存	-
试剂二	粉剂×3 支	-20℃避光保存	使用前每支加入 500 µL 蒸馏水充分溶解 (现用现配,配制后 4℃可保存1个月)
试剂三	粉剂×2 瓶	-20℃避光保存	使用前加入 15 mL 蒸馏水充分溶解 (分装后-20℃可保存1个月,避免反复冻融)
试剂四	液体 20 mL×1 瓶	4℃避光保存	-
标准液	液体 1 mL×1 支	-20℃保存	100 μmol/mL D-乳酸标准液

标准稀释液的制备(现用现配): 使用前将 100 μmol/mL D-乳酸标准液使用蒸馏水稀释至 0.8、0.6、0.4、0.2、0.1、0.05 μmol/mL 即为标准稀释液。

三、产品使用说明

测定过程中所需要的仪器和试剂:可见分光光度计、1 mL 玻璃比色皿(光径 10 mm、狭缝 3 mm、体积 1.05 mL)、研钵/匀浆器、可调式移液器、台式离心机、恒温水浴/培养箱和蒸馏水。

1.待测样本的制备(可根据预实验结果适当调整样品量及比例)

- ①组织:按照组织质量 (g):提取液 A 体积 (mL) 为 1: (5-10) 的比例 (建议称取 0.1 g 组织,加入 1 mL 提取液 A) 处理样品,冰浴匀浆,4°C 12000 g 离心 10 min,吸取 800 μ L 上清液至离心管中,加入 150 μ L 提取液 B 充分混匀至无气泡产生,4°C 12000 g 离心 10 min,取上清液于冰上待测。
- ②细菌或细胞: 离心收集细菌或细胞至离心管内,按照细菌或细胞数量(10⁴个): 提取液 A 体积(mL)为(500-1000):1的比例(建议500万细菌或细胞加入1 mL 提取液 A)处理样品,冰浴超声破碎细菌或细胞(功率300 W,超声3 s,间隔7 s,总时间3 min),4℃12000 g 离心10 min,吸取800 μL 上清液至离心管中,加入150 μL 提取液 B 充分混匀至无气泡产生,4℃12000 g 离心10 min,取上清液于冰上待测。
- ③血清(浆)、培养液等液体样本:吸取 100 μL 液体样本加入 1 mL 提取液 A, 4℃ 12000 g 离心 10 min,吸取 800 μL 上清液至离心管中,加入 150 μL 提取液 B 充分混匀至无气泡产生,4℃ 12000 g 离心 10 min,取上清液于冰上待测。

注:提取液 B 加入时会产生大量气泡,应缓慢加入并吹打混匀至无气泡产生,建议使用 2 mL 离心管。

2.测定步骤

- ①分光光度计预热 30 min 以上,调节波长至 450 nm,蒸馏水调零。
- ②检测工作液的制备(现用现配):使用前根据使用量,按照试剂二:蒸馏水=1:9的体积比配制。
- ③标准稀释液的制备 (现用现配): 使用前将 100 μmol/mL D-乳酸标准液使用蒸馏水稀释至 0.8、0.6、0.4、0.2、0.1、0.05 μmol/mL 即为标准稀释液。

序号	A	1	2	3	4	5	6
稀释前浓度(µmol/mL)	100	10	10	10	0.4	0.2	0.1
标准液体积(μL)	100	80	60	40	500	500	500
蒸馏水体积(μL)	900	920	940	960	500	500	500
稀释后浓度(μmol/mL)	10	0.8	0.6	0.4	0.2	0.1	0.05

Beijing Boxbio Science & Technology Co., Ltd.

④在离心管中依次加入下列试剂 (避光条件下进行):

试剂	测定管 (μL)	对照管 (μL)	标准管 (µL)	空白管 (μL)
 待测样本	100	100	-	-
标准稀释液	-	-	100	-
蒸馏水	-	100	-	100
试剂一	450	450	450	450
检测工作液	100	-	100	100
试剂三	200	200	200	200
试剂四	150	150	150	150

充分混匀, 37℃避光准确反应 30 min

吸光值测定:将反应液置于 $1 \, \text{mL}$ 玻璃比色皿中,测定 $450 \, \text{nm}$ 处吸光值,记为 A 测定、A 对照、 A 标准和 A 空白;计算 ΔA 测定=A 测定-A 对照, ΔA 标准=A 标准-A 空白。注:每个样本均需设一个 对照管,各浓度标准管和空白管只需测定 1-2 次。

标准曲线的建立: 以 0.8、0.6、0.4、0.2、0.1、0.05 μ mol/mL 为横坐标(x), 以其对应的 ΔA 标准为纵坐标(y), 绘制标准曲线, 得到标准方程 y=kx+b, 将 ΔA 测定代入公式中得到 x (μ mol/mL)。

3. D-乳酸(D-LA)含量计算

①按组织蛋白含量计算

D-乳酸含量(
$$\mu$$
mol/mg prot) = $\frac{x \times (V \perp \dot{h} \times V \nmid B) \times V \nmid A}{Cpr \times W \times V \perp \dot{h} \times V} = \frac{1.1875 \times x}{Cpr \times W}$

②按组织样本质量计算

D-乳酸含量(
$$\mu$$
mol/g) = $\frac{x \times (V \perp \dot{h} \cdot \dot{k} + V \not \downarrow B) \times V \not \downarrow A}{W \times V \perp \dot{h} \cdot \dot{k}} = \frac{1.1875 \times x}{W}$

③按细菌或细胞数量计算

D-乳酸含量(
$$\mu$$
mol/ 10^4 cell) = $\frac{x \times (V \perp \dot{\hbar} \chi + V \not \mu B) \times V \not \mu A}{$ 细菌或细胞数量 $\times V \perp \dot{\hbar} \chi$ = $\frac{1.1875 \times x}{$ 细菌或细胞数量

④按液体样本体积计算

D-乳酸含量(
$$\mu$$
mol/mL) = $\frac{\mathbf{x} \times (\mathbf{V} \perp \dot{\mathbf{h}} \times \mathbf{V} \not \in \mathbf{B}) \times (\mathbf{V} \times \mathbf{V} \not \in \mathbf{A})}{\mathbf{V} \times \mathbf{V} \perp \dot{\mathbf{h}} \times \mathbf{V}} = 13.0625 \times \mathbf{x}$

注释: V提A: 提取过程中加入提取液 A 的体积, 1 mL; V上清液: 提取过程中吸取上清液的体积, 0.8 mL; V提B: 提取过程中加入提取液 B 的体积, 0.15 mL; V液: 提取过程中加入液体样本的体积, 0.1 mL; Cpr: 样本蛋白含量, mg/g; W: 样本质量, g; 细菌或细胞数量: 以万计, 若 500万细菌或细胞则代入 500 即可。

四、注意事项

- ①若 A 测定或ΔA 测定超出标准吸光值线性范围: 高于最高值建议将待测样本使用蒸馏水适当稀释后再进行测定; 低于最低值建议制备更高浓度样本后再进行测定, 计算时相应修改;
- ②试剂二配制后有效期较短,为便于试验安排,附赠一支试剂二作为备用,每支均可完成至少50个样本的检测;
- ③提取液中含有蛋白沉淀组分, 待测样本不能用于蛋白含量测定, 若使用蛋白浓度计算 D-乳酸含量,则需要另取样本使用 PBS 或生理盐水按照相同步骤制备为待测样本, 再进行蛋白浓度测定;
- ④准确在规定时间点完成吸光值测定,以确保检测结果的准确性和重复性;若样本较多可分批进行检测,以确保组间反应时间一致;
 - ⑤反应体系中试剂不能按比例配制为混合液使用,必须按反应体系顺序依次加入;
- ⑥为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书内容为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异较大的样本进行预测定,过程中问题请您及时与工作人员联系。

For Research Use Only. Not for Use in Diagnostic Procedures.

Notes:		

boxbio

Manufactured and Distributed by

Beijing Boxbio Science & Technology Co., Ltd. Liandong U Valley, Tongzhou District, Beijing, China TEL: 400-805-8228

E-MAIL: techsupport@boxbio.cn

Copyright $\ensuremath{\mathbb{C}}$ 2020 Boxbio, All Rights Reserved.

